Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 196
Filter
1.
J Med Chem ; 66(13): 8896-8916, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37343180

ABSTRACT

While treatment options for human African trypanosomiasis (HAT) have improved significantly, there is still a need for new drugs with eradication now a realistic possibility. Here, we report the development of 2,4-diaminothiazoles that demonstrate significant potency against Trypanosoma brucei, the causative agent of HAT. Using phenotypic screening to guide structure-activity relationships, potent drug-like inhibitors were developed. Proof of concept was established in an animal model of the hemolymphatic stage of HAT. To treat the meningoencephalitic stage of infection, compounds were optimized for pharmacokinetic properties, including blood-brain barrier penetration. However, in vivo efficacy was not achieved, in part due to compounds evolving from a cytocidal to a cytostatic mechanism of action. Subsequent studies identified a nonessential kinase involved in the inositol biosynthesis pathway as the molecular target of these cytostatic compounds. These studies highlight the need for cytocidal drugs for the treatment of HAT and the importance of static-cidal screening of analogues.


Subject(s)
Cytostatic Agents , Trypanocidal Agents , Trypanosoma brucei brucei , Trypanosomiasis, African , Animals , Humans , Trypanosomiasis, African/drug therapy , Trypanocidal Agents/therapeutic use , Trypanocidal Agents/pharmacokinetics , Cytostatic Agents/therapeutic use , Blood-Brain Barrier
2.
J Med Chem ; 66(2): 1221-1238, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36607408

ABSTRACT

Probing multiple proprietary pharmaceutical libraries in parallel via virtual screening allowed rapid expansion of the structure-activity relationship (SAR) around hit compounds with moderate efficacy against Trypanosoma cruzi, the causative agent of Chagas Disease. A potency-improving scaffold hop, followed by elaboration of the SAR via design guided by the output of the phenotypic virtual screening efforts, identified two promising hit compounds 54 and 85, which were profiled further in pharmacokinetic studies and in an in vivo model of T. cruzi infection. Compound 85 demonstrated clear reduction of parasitemia in the in vivo setting, confirming the interest in this series of 2-(pyridin-2-yl)quinazolines as potential anti-trypanosome treatments.


Subject(s)
Chagas Disease , Trypanocidal Agents , Trypanosoma cruzi , Humans , Chagas Disease/drug therapy , Quinazolines/pharmacology , Quinazolines/therapeutic use , Structure-Activity Relationship , Trypanocidal Agents/therapeutic use , Trypanocidal Agents/pharmacokinetics
3.
J Med Chem ; 64(16): 12152-12162, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34355566

ABSTRACT

Leishmaniasis, a disease caused by protozoa of the Leishmania species, afflicts roughly 12 million individuals worldwide. Most existing drugs for leishmaniasis are toxic, expensive, difficult to administer, and subject to drug resistance. We report a new class of antileishmanial leads, the 3-arylquinolines, that potently block proliferation of the intramacrophage amastigote form of Leishmania parasites with good selectivity relative to the host macrophages. Early lead 34 was rapidly acting and possessed good potency against L. mexicana (EC50 = 120 nM), 30-fold selectivity for the parasite relative to the macrophage (EC50 = 3.7 µM), and also blocked proliferation of Leishmania donovani parasites resistant to antimonial drugs. Finally, another early lead, 27, which exhibited reasonable in vivo tolerability, impaired disease progression during the dosing period in a murine model of cutaneous leishmaniasis. These results suggest that the arylquinolines provide a fruitful departure point for the development of new antileishmanial drugs.


Subject(s)
Leishmaniasis, Cutaneous/drug therapy , Quinolines/therapeutic use , Trypanocidal Agents/therapeutic use , Animals , Female , Leishmania/drug effects , Mice, Inbred BALB C , Microsomes, Liver/metabolism , Molecular Structure , Quinolines/chemical synthesis , Quinolines/metabolism , Quinolines/pharmacokinetics , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/metabolism , Trypanocidal Agents/pharmacokinetics
4.
Biomed Chromatogr ; 35(10): e5169, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33978959

ABSTRACT

Previously compound 12 showed great anti-trypanosome activity without toxicity in an in vivo study. In the current study, a sensitive and rapid high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed and validated to investigate its pharmacokinetics in mouse plasma. A protein precipitation method was applied to extract the compound, and it was then separated using a Kinetex C18 column with mobile phase consisting of acetonitrile-0.1% formic acid water (50:50, v/v) at a flow rate of 300 µl/min. The analytes were detected with the multiple reaction monitoring in negative electrospray ionization source for quantitative response of the compounds. Compound 12 was detected at m/z 477.0 → 367.2, while the internal standard compound 14 was detected at m/z 499.2 → 268.2. Inter- and intra-day precision was <5.22 and 2.79% respectively, while the accuracy range was within ±9.65%. The method was successfully applied to evaluate the pharmacokinetics of compound 12 in mouse plasma with two formulations (20% Cremophor EL or sesame oil) and drug administration routes (oral and intraperitoneal injection). We observed a better drug serum concentration with the Cremophor formulation, and the two different drug administration routes did not show significant differences from the drug distribution.


Subject(s)
Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Trypanocidal Agents , Administration, Oral , Animals , Glycerol/analogs & derivatives , Injections, Intraperitoneal , Linear Models , Male , Mice , Reproducibility of Results , Sensitivity and Specificity , Sesame Oil , Trypanocidal Agents/administration & dosage , Trypanocidal Agents/blood , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacokinetics
5.
PLoS Negl Trop Dis ; 15(4): e0009276, 2021 04.
Article in English | MEDLINE | ID: mdl-33857146

ABSTRACT

BACKGROUND: Human African trypanosomiasis (HAT or sleeping sickness) is caused by the parasite Trypanosoma brucei sspp. The disease has two stages, a haemolymphatic stage after the bite of an infected tsetse fly, followed by a central nervous system stage where the parasite penetrates the brain, causing death if untreated. Treatment is stage-specific, due to the blood-brain barrier, with less toxic drugs such as pentamidine used to treat stage 1. The objective of our research programme was to develop an intravenous formulation of pentamidine which increases CNS exposure by some 10-100 fold, leading to efficacy against a model of stage 2 HAT. This target candidate profile is in line with drugs for neglected diseases inititative recommendations. METHODOLOGY: To do this, we evaluated the physicochemical and structural characteristics of formulations of pentamidine with Pluronic micelles (triblock-copolymers of polyethylene-oxide and polypropylene oxide), selected candidates for efficacy and toxicity evaluation in vitro, quantified pentamidine CNS delivery of a sub-set of formulations in vitro and in vivo, and progressed one pentamidine-Pluronic formulation for further evaluation using an in vivo single dose brain penetration study. PRINCIPAL FINDINGS: Screening pentamidine against 40 CNS targets did not reveal any major neurotoxicity concerns, however, pentamidine had a high affinity for the imidazoline2 receptor. The reduction in insulin secretion in MIN6 ß-cells by pentamidine may be secondary to pentamidine-mediated activation of ß-cell imidazoline receptors and impairment of cell viability. Pluronic F68 (0.01%w/v)-pentamidine formulation had a similar inhibitory effect on insulin secretion as pentamidine alone and an additive trypanocidal effect in vitro. However, all Pluronics tested (P85, P105 and F68) did not significantly enhance brain exposure of pentamidine. SIGNIFICANCE: These results are relevant to further developing block-copolymers as nanocarriers, improving BBB drug penetration and understanding the side effects of pentamidine.


Subject(s)
Blood-Brain Barrier/metabolism , Pentamidine/pharmacokinetics , Trypanocidal Agents/pharmacokinetics , Trypanosomiasis, African/metabolism , Animals , Female , Humans , Male , Mice , Mice, Inbred BALB C , Neglected Diseases/drug therapy , Pentamidine/therapeutic use , Trypanocidal Agents/therapeutic use , Trypanosoma brucei gambiense , Trypanosoma brucei rhodesiense , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/drug therapy , Tsetse Flies/parasitology
6.
Clin Pharmacol Drug Dev ; 10(5): 542-555, 2021 05.
Article in English | MEDLINE | ID: mdl-33029953

ABSTRACT

Treatment of Chagas disease with nifurtimox requires age- and body weight-adjusted dosing, resulting in complex dosing instructions. Appropriate formulations are needed for precise and compliant dosing, especially in pediatric patients. We characterized the biopharmaceutical features of a standard nifurtimox 120-mg tablet and a 30-mg tablet developed to improve dose accuracy. Two open-label, randomized crossover studies were conducted in adult outpatients with Chagas disease. One study investigated whether 4 × 30-mg tablets and 1 × 120-mg tablet were bioequivalent and whether tablets can be administered as an aqueous slurry without affecting bioavailability. The second study investigated the effect of a high-calorie/high-fat diet versus fasting on the absorption of nifurtimox after a single 4 × 30-mg dose. Interventions were equivalent if the 90% confidence interval (CI) of their least-squares (LS) mean ratios for both AUC0-tlast and Cmax were in the range of 80%-125%. The 4 × 30-mg and 1 × 120-mg tablet doses were bioequivalent (AUC0-tlast : LS mean ratio, 104.7%; 90%CI, 99.1%-110.7%; Cmax : LS mean ratio, 101.7%; 90%CI, 89.4%-115.6%; n = 24). Exposure when giving the 4 × 30-mg dose as a slurry or as tablets was comparable, with an AUC0-tlast ratio of 93.2% (84.2%-103.1%; n = 12) and a slightly decreased Cmax ratio for the slurry of 76.5% (68.8%-85.1%). Food improved the bioavailability of nifurtimox substantially (AUC0-tlast ratiofed/fasted , 172%; 90%CI, 154%-192%; Cmax ratiofed/fasted , 168%; 90%CI, 150%-187%). The data indicate that the 30- and 120-mg tablets are suitable for dosing adult and pediatric patients accurately; nifurtimox should be administered under fed conditions.


Subject(s)
Chagas Disease/drug therapy , Food-Drug Interactions , Nifurtimox/administration & dosage , Trypanocidal Agents/administration & dosage , Adult , Area Under Curve , Biological Availability , Cross-Over Studies , Fasting , Female , Humans , Male , Middle Aged , Nifurtimox/pharmacokinetics , Tablets , Therapeutic Equivalency , Trypanocidal Agents/pharmacokinetics , Young Adult
7.
Sci Rep ; 10(1): 16815, 2020 10 08.
Article in English | MEDLINE | ID: mdl-33033328

ABSTRACT

Chagas disease (CD), caused by the flagellate protozoan Trypanosoma cruzi, is one of the major public health problems in developing countries. Benznidazole (BNZ) is the only drug available for CD treatment in most countries, however, it presents high toxicity and low bioavailability. To address these problems this study used Zeolitic Imidazolate Framework-8 (ZIF-8), which has garnered considerable attention due to its potential applications, enabling the controlled delivery of drugs. The present work developed and characterized a BNZ@ZIF-8 system, and the modulation of BNZ release from the ZIF-8 framework was evaluated through the in vitro dialysis release method under sink conditions at different pH values. Moreover, the in vitro evaluation of cell viability and cytotoxicity by MTT assay were also performed. The dissolution studies corroborated that a pH sensitive Drug Delivery System capable of vectorizing the release of BNZ was developed, may leading to the improvement in the bioavailability of BNZ. The MTT assay showed that no statistically significant toxic effects occurred in the developed system, nor significant effects on cell viability.


Subject(s)
Drug Carriers , Nitroimidazoles/administration & dosage , Trypanocidal Agents/administration & dosage , Dialysis , Humans , Hydrogen-Ion Concentration , Imidazoles , Nitroimidazoles/adverse effects , Nitroimidazoles/pharmacokinetics , Spectrometry, X-Ray Emission , Spectroscopy, Fourier Transform Infrared , Trypanocidal Agents/adverse effects , Trypanocidal Agents/pharmacokinetics , Zeolites
8.
Eur J Med Chem ; 206: 112668, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32795774

ABSTRACT

To study the antikinetoplastid 3-nitroimidazo[1,2-a]pyridine pharmacophore, a structure-activity relationship study was conducted through the synthesis of 26 original derivatives and their in vitro evaluation on both Leishmania spp and Trypanosoma brucei brucei. This SAR study showed that the antitrypanosomal pharmacophore was less restrictive than the antileishmanial one and highlighted positions 2, 6 and 8 of the imidazopyridine ring as key modulation points. None of the synthesized compounds allowed improvement in antileishmanial activity, compared to previous hit molecules in the series. Nevertheless, compound 8, the best antitrypanosomal molecule in this series (EC50 = 17 nM, SI = 2650 & E° = -0.6 V), was not only more active than all reference drugs and previous hit molecules in the series but also displayed improved aqueous solubility and better in vitro pharmacokinetic characteristics: good microsomal stability (T1/2 > 40 min), moderate albumin binding (77%) and moderate permeability across the blood brain barrier according to a PAMPA assay. Moreover, both micronucleus and comet assays showed that nitroaromatic molecule 8 was not genotoxic in vitro. It was evidenced that bioactivation of molecule 8 was operated by T. b. brucei type 1 nitroreductase, in the same manner as fexinidazole. Finally, a mouse pharmacokinetic study showed that 8 displayed good systemic exposure after both single and repeated oral administrations at 100 mg/kg (NOAEL) and satisfying plasmatic half-life (T1/2 = 7.7 h). Thus, molecule 8 appears as a good candidate for initiating a hit to lead drug discovery program.


Subject(s)
Imidazoles/chemistry , Imidazoles/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Animals , DNA Damage/drug effects , Drug Discovery , Hep G2 Cells , Humans , Imidazoles/metabolism , Imidazoles/pharmacokinetics , Inhibitory Concentration 50 , Mice , Parasitic Sensitivity Tests , Pyridines/metabolism , Pyridines/pharmacokinetics , Serum Albumin/metabolism , Structure-Activity Relationship , Trypanocidal Agents/metabolism , Trypanocidal Agents/pharmacokinetics
9.
J Med Chem ; 63(17): 9912-9927, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32786222

ABSTRACT

Human African trypanosomiasis (HAT), or sleeping sickness, is caused by the protozoan parasite Trypanosoma brucei and transmitted through the bite of infected tsetse flies. The disease is considered fatal if left untreated. To identify new chemotypes against Trypanosoma brucei, previously we identified 797 potent kinase-targeting inhibitors grouped into 59 clusters plus 53 singleton compounds with at least 100-fold selectivity over HepG2 cells. From this set of hits, a cluster of diaminopurine-derived compounds was identified. Herein, we report our medicinal chemistry investigation involving the exploration of structure-activity and structure-property relationships around one of the high-throughput screening (HTS) hits, N2-(thiophen-3-yl)-N6-(2,2,2-trifluoroethyl)-9H-purine-2,6-diamine (1, NEU-1106). This work led to the identification of a potent lead compound (4aa, NEU-4854) with improved in vitro absorption, distribution, metabolism, and excretion (ADME) properties, which was progressed into proof-of-concept translation of in vitro antiparasitic activity to in vivo efficacy.


Subject(s)
Purines/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Animals , Hep G2 Cells , Humans , Mice , Microsomes, Liver/metabolism , Molecular Structure , Parasitic Sensitivity Tests , Proof of Concept Study , Purines/chemical synthesis , Purines/metabolism , Purines/pharmacokinetics , Rats , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/metabolism , Trypanocidal Agents/pharmacokinetics
10.
Trials ; 21(1): 328, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32293523

ABSTRACT

BACKGROUND: Chagas disease (CD) continues to be a neglected infectious disease with one of the largest burdens globally. Despite the modest cure rates in adult chronic patients and its safety profile, benznidazole (BNZ) is still the drug of choice. Its current recommended dose is based on nonrandomized studies, and efficacy and safety of the optimal dose of BNZ have been scarcely analyzed in clinical trials. METHODS/DESIGN: MULTIBENZ is a phase II, randomized, noninferiority, double-blind, multicenter international clinical trial. A total of 240 patients with Trypanosoma CD in the chronic phase will be recruited in four different countries (Argentina, Brazil, Colombia, and Spain). Patients will be randomized to receive BNZ 150 mg/day for 60 days, 400 mg/day for 15 days, or 300 mg/day for 60 days (comparator arm). The primary outcome is the efficacy of three different BNZ therapeutic schemes in terms of dose and duration. Efficacy will be assessed according to the proportion of patients with sustained parasitic load suppression in peripheral blood measured by polymerase chain reaction. The secondary outcomes are related to pharmacokinetics and drug tolerability. The follow-up will be 12 months from randomization to end of study participation. Recruitment was started in April 2018. CONCLUSION: This is a clinical trial conducted for the assessment of different dose schemes of BNZ compared with the standard treatment regimen for the treatment of CD in the chronic phase. MULTIBENZ may help to clarify which is the most adequate BNZ regimen in terms of efficacy and safety, predicated on sustained parasitic load suppression in peripheral blood. TRIAL REGISTRATION: ClinicalTrials.gov, NCT03191162. Registered on 19 June 2017.


Subject(s)
Chagas Disease/drug therapy , Neglected Diseases/parasitology , Nitroimidazoles/therapeutic use , Trypanocidal Agents/therapeutic use , Trypanosoma cruzi/isolation & purification , Adult , Aftercare , Argentina/epidemiology , Brazil/epidemiology , Case-Control Studies , Chagas Disease/parasitology , Chronic Disease , Colombia/epidemiology , Double-Blind Method , Female , Humans , Male , Nitroimidazoles/pharmacokinetics , Parasite Load/statistics & numerical data , Safety , Spain/epidemiology , Treatment Outcome , Trypanocidal Agents/pharmacokinetics , Trypanosoma cruzi/genetics
11.
J Med Chem ; 63(6): 3066-3089, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32134269

ABSTRACT

Chagas disease is caused by the protozoan parasite Trypanosoma cruzi. It is endemic in South and Central America and recently has been found in other parts of the world, due to migration of chronically infected patients. The current treatment for Chagas disease is not satisfactory, and there is a need for new treatments. In this work, we describe the optimization of a hit compound resulting from the phenotypic screen of a library of compounds against T. cruzi. The compound series was optimized to the level where it had satisfactory pharmacokinetics to allow an efficacy study in a mouse model of Chagas disease. We were able to demonstrate efficacy in this model, although further work is required to improve the potency and selectivity of this series.


Subject(s)
Chagas Disease/drug therapy , Quinazolinones/therapeutic use , Trypanocidal Agents/therapeutic use , Trypanosoma cruzi/drug effects , Animals , Cell Line , Drug Discovery , Female , Mice, Inbred BALB C , Molecular Structure , Parasitic Sensitivity Tests , Proof of Concept Study , Quinazolinones/chemical synthesis , Quinazolinones/pharmacokinetics , Rats , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacokinetics , Small Molecule Libraries/therapeutic use , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacokinetics
12.
J Med Chem ; 63(5): 2527-2546, 2020 03 12.
Article in English | MEDLINE | ID: mdl-31670951

ABSTRACT

Human African trypanosomiasis (HAT) is a neglected tropical disease caused by infection with either of two subspecies of the parasite Trypanosoma brucei. Due to a lack of economic incentive to develop new drugs, current treatments have severe limitations in terms of safety, efficacy, and ease of administration. In an effort to develop new HAT therapeutics, we report the structure-activity relationships around T. brucei for a series of benzoxazepinoindazoles previously identified through a high-throughput screen of human kinase inhibitors, and the subsequent in vivo experiments for HAT. We identified compound 18, which showed an improved kinase selectivity profile and acceptable pharmacokinetic parameters, as a promising lead. Although treatment with 18 cured 60% of mice in a systemic model of HAT, the compound was unable to clear parasitemia in a CNS model of the disease. We also report the results of cross-screening these compounds against T. cruzi, L. donovani, and S. mansoni.


Subject(s)
Indazoles/chemistry , Indazoles/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/drug therapy , Animals , Female , Humans , Indazoles/pharmacokinetics , Mice , Oxazepines/chemistry , Oxazepines/pharmacokinetics , Oxazepines/pharmacology , Parasitic Sensitivity Tests , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacokinetics , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Trypanocidal Agents/pharmacokinetics
13.
J Med Chem ; 63(2): 756-783, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31846577

ABSTRACT

From a high-throughput screen of 42 444 known human kinases inhibitors, a pyrazolo[1,5-b]pyridazine scaffold was identified to begin optimization for the treatment of human African trypanosomiasis. Previously reported data for analogous compounds against human kinases GSK-3ß, CDK-2, and CDK-4 were leveraged to try to improve the selectivity of the series, resulting in 23a which showed selectivity for T. b. brucei over these three human enzymes. In parallel, properties known to influence the absorption, distribution, metabolism, and excretion (ADME) profile of the series were optimized resulting in 20g being progressed into an efficacy study in mice. Though 20g showed toxicity in mice, it also demonstrated CNS penetration in a PK study and significant reduction of parasitemia in four out of the six mice.


Subject(s)
Pyridazines/chemical synthesis , Pyridazines/pharmacology , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacology , Trypanosomiasis, African/drug therapy , Animals , Cell Survival/drug effects , Crystallography, X-Ray , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Drug Repositioning , Glycogen Synthase Kinase 3 beta/antagonists & inhibitors , Hepatocytes/drug effects , Hepatocytes/metabolism , High-Throughput Screening Assays , Humans , Leishmania donovani/drug effects , Mice , Models, Molecular , Pyridazines/pharmacokinetics , Rats , Structure-Activity Relationship , Substrate Specificity , Tissue Distribution , Trypanocidal Agents/pharmacokinetics , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/parasitology
14.
J Med Chem ; 62(22): 10362-10375, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31657555

ABSTRACT

Acylaminobenzothiazole hits were identified as potential inhibitors of Trypanosoma cruzi replication, a parasite responsible for Chagas disease. We selected compound 1 for lead optimization, aiming to improve in parallel its anti-T. cruzi activity (IC50 = 0.63 µM) and its human metabolic stability (human clearance = 9.57 mL/min/g). A total of 39 analogues of 1 were synthesized and tested in vitro. We established a multiparametric structure-activity relationship, allowing optimization of antiparasite activity, physicochemical parameters, and ADME properties. We identified compound 50 as an advanced lead with an improved anti-T. cruzi activity in vitro (IC50 = 0.079 µM) and an enhanced metabolic stability (human clearance = 0.41 mL/min/g) and opportunity for the oral route of administration. After tolerability assessment, 50 demonstrated a promising in vivo efficacy.


Subject(s)
Chagas Disease/drug therapy , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Administration, Oral , Animals , Benzothiazoles/chemical synthesis , Benzothiazoles/chemistry , Chlorine/chemistry , Dogs , Female , High-Throughput Screening Assays , Humans , Madin Darby Canine Kidney Cells , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Microsomes, Liver/drug effects , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanocidal Agents/administration & dosage , Trypanocidal Agents/pharmacokinetics
15.
PLoS Negl Trop Dis ; 13(2): e0007129, 2019 02.
Article in English | MEDLINE | ID: mdl-30735501

ABSTRACT

New treatments are needed for neglected tropical diseases (NTDs) such as Human African trypanosomiasis (HAT), Chagas disease, and schistosomiasis. Through a whole organism high-throughput screening campaign, we previously identified 797 human kinase inhibitors that grouped into 59 structural clusters and showed activity against T. brucei, the causative agent of HAT. We herein report the results of further investigation of one of these clusters consisting of substituted isatin derivatives, focusing on establishing structure-activity and -property relationship scope. We also describe their in vitro absorption, distribution, metabolism, and excretion (ADME) properties. For one isatin, NEU-4391, which offered the best activity-property profile, pharmacokinetic parameters were measured in mice.


Subject(s)
Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacology , Trypanosomiasis, African/drug therapy , Animals , Female , Mice , Molecular Structure , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacokinetics
16.
Article in English | MEDLINE | ID: mdl-30670439

ABSTRACT

Fexinidazole is a novel oral treatment for human African trypanosomiasis caused by Trypanosoma brucei gambiense (g-HAT). Fexinidazole also has activity against T. cruzi, the causative agent of Chagas disease. During the course of a dose ranging assessment in patients with chronic indeterminate Chagas disease, delayed neutropenia and significant increases in hepatic transaminases were observed and clinical investigations were suspended. We retrospectively analyzed all available pharmacokinetic and pharmacodynamic data on fexinidazole in normal healthy volunteers and in patients with Chagas disease and g-HAT to assess the determinants of toxicity. A population pharmacokinetic model was fitted to plasma concentrations (n = 4,549) of the bioactive fexinidazole sulfone metabolite, accounting for the majority of the bioactive exposure, from three phase 1 studies, two g-HAT phase 2/3 field trials, and one Chagas disease phase 2 field trial (n = 462 individuals in total). Bayesian exposure-response models were then fitted to hematological and liver-related pharmacodynamic outcomes in Chagas disease patients. Neutropenia, reductions in platelet counts, and elevations in liver transaminases were all found to be exposure dependent and, thus, dose dependent in patients with Chagas disease. Clinically insignificant transient reductions in neutrophil and platelet counts consistent with these exposure-response relationships were observed in patients with g-HAT. In contrast, no evidence of hepatotoxicity was observed in patients with g-HAT. Fexinidazole treatment results in a dose-dependent liver toxicity and transient bone marrow suppression in Chagas disease patients. Regimens of shorter duration should be evaluated in clinical trials with patients with Chagas disease. The currently recommended regimen for sleeping sickness provides exposures within a satisfactory safety margin for bone marrow suppression and does not cause hepatotoxicity.


Subject(s)
Bone Marrow/drug effects , Liver/drug effects , Nitroimidazoles/adverse effects , Nitroimidazoles/pharmacokinetics , Trypanocidal Agents/adverse effects , Trypanocidal Agents/pharmacokinetics , Administration, Oral , Animals , Bayes Theorem , Bone Marrow/metabolism , Chagas Disease/drug therapy , Chagas Disease/metabolism , Clinical Trials as Topic , Disease Models, Animal , Double-Blind Method , Humans , Liver/metabolism , Male , Nitroimidazoles/pharmacology , Randomized Controlled Trials as Topic , Sulfones/adverse effects , Sulfones/pharmacokinetics , Sulfones/pharmacology , Treatment Outcome , Trypanocidal Agents/pharmacology , Trypanosoma brucei gambiense/drug effects , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/metabolism
17.
Biomed Pharmacother ; 106: 1082-1090, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30119174

ABSTRACT

The search for new drugs for the treatment of leishmaniasis is an important strategy for improving the current therapeutic arsenal for the disease. There are several limitations to the available drugs including high toxicity, low efficacy, prolonged parenteral administration, and high costs. Steroids are a diverse group of compounds with various applications in pharmacology. However, the antileishmanial activity of this class of molecules has not yet been explored. Therefore, in the present study, we investigated the antileishmanial activity and cytotoxicity of novel steroids against murine macrophages with a focus on the derivatives of cholesterol (CD), cholic acid (CA), and deoxycholic acid (DA). Furthermore, the mechanism of action of the best compound was assessed, and in silico studies to evaluate the physicochemical and pharmacokinetic properties were also conducted. Among the sixteen derivatives, schiffbase2, CD2 and deoxycholic acid derivatives (DOCADs) were effective against promastigotes of Leishmania species. Despite their low toxicity to macrophages, the majority of DOCADs were active against intracellular amastigotes of L. amazonensis, and DOCAD5 exhibited the best biological effect against these parasitic stages (IC50 = 15.34 µM). Neither the CA derivatives (CAD) nor DA alone inhibited the intracellular parasites. Thus, the absence of hydroxyl in the C-7 position of the steroid nucleus, as well as the modification of the acid group in DOCADs were considered important for antileishmanial activity. The treatment of L. amazonensis promastigote forms with DOCAD5 induced biochemical changes such as depolarization of the mitochondrial membrane potential, increased ROS production and cell cycle arrest. No alterations in parasite plasma membrane integrity were observed. In silico physicochemical and pharmacokinetic studies suggest that DOCAD5 could be a good candidate for an oral drug. The data demonstrate the potential antileishmanial effect of certain steroid derivatives and encourage new in vivo studies.


Subject(s)
Cholesterol/pharmacology , Deoxycholic Acid/pharmacology , Drug Discovery/methods , Leishmania/drug effects , Leishmaniasis/drug therapy , Macrophages, Peritoneal/drug effects , Trypanocidal Agents/pharmacology , Administration, Oral , Animals , Cell Cycle Checkpoints/drug effects , Cholesterol/analogs & derivatives , Cholesterol/chemical synthesis , Cholesterol/pharmacokinetics , Cholic Acid/chemical synthesis , Cholic Acid/pharmacokinetics , Cholic Acid/pharmacology , Deoxycholic Acid/analogs & derivatives , Deoxycholic Acid/chemical synthesis , Deoxycholic Acid/pharmacokinetics , Dose-Response Relationship, Drug , Leishmania/growth & development , Leishmania/metabolism , Leishmaniasis/parasitology , Macrophages, Peritoneal/parasitology , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred BALB C , Mitochondria/drug effects , Mitochondria/metabolism , Models, Biological , Molecular Structure , Oxidative Stress/drug effects , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacokinetics
18.
Eur J Pharm Sci ; 122: 281-291, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30018011

ABSTRACT

Benznidazole (BZ), first-line drug for Chagas treatment, is available as immediate-release tablets. High frequency of administration, long-term therapy, and side effects of BZ conspire against treatment adherence, and negatively impact in therapeutic success. We have developed BZ-loaded interpolyelectrolyte complexes (IPECs) composed of polymethacrylates (EE-EL-BZ) or polysaccharides (Ch-AA-BZ) for controlled BZ release. This work aimed to evaluate their preclinical pharmacokinetics compared to Abarax® (reference treatment) and to correlate them with the in vitro BZ release. A randomization schedule with a 3 × 2 cross-over design was used. Each healthy dog received a single oral dose of 100 mg of BZ from EE-EL-BZ, Ch-AA-BZ or Abarax®. BZ quantification was performed in plasma by a validated HPLC-UV method. Moreover, in silico simulations using the pharmacokinetic software PK Solutions 2.0™ were calculated for the multiple-dose administration at two dose regimens: 100 mg of BZ administered every 12 and 24 h. Also, the relationship between in vitro dissolution and in vivo plasma BZ concentration profiles in a single step was model for IVIVC analysis. BZ was rapidly absorbed from all formulations. The Cmax value for Ch-AA-BZ was 32% higher than reference (p < 0.05) and an earlier Tmax (4.2 h) was observed as compared to EE-EL-BZ (6.0 h). For both IPECs, the Tmax values were higher (p < 0.05) and the areas under the curve were 25% greater than those of Abarax® (p < 0.01). Despite these variations in pharmacokinetics parameters, simulations of once or twice daily dosing showed that all formulations reached a steady-state range concentration above of the minimum therapeutic dose while avoiding high BZ concentrations related to increased side effects. A linear level A IVIVC model was established using plasma concentration profiles and dissolved data obtained. Thus, BZ-loaded IPECs prolonged drug release and formulated as capsules showed improved in vivo performance, in terms of bioavailability and Tmax values, which were significantly higher compared to Abarax®. These BZ carrier systems would be useful for oral administration in the treatment of Chagas disease.


Subject(s)
Nitroimidazoles , Polymers , Trypanocidal Agents , Administration, Oral , Animals , Biological Availability , Dogs , Drug Liberation , Female , Male , Nitroimidazoles/administration & dosage , Nitroimidazoles/chemistry , Nitroimidazoles/pharmacokinetics , Polymers/administration & dosage , Polymers/chemistry , Polymers/pharmacokinetics , Trypanocidal Agents/administration & dosage , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacokinetics
19.
Artif Cells Nanomed Biotechnol ; 46(sup3): S86-S94, 2018.
Article in English | MEDLINE | ID: mdl-30033773

ABSTRACT

The Trypanosoma and Toxoplasma spp, are etiological agents of diseases capable of causing significant morbidity, mortality and economic burden, predominantly in developing countries. Currently, there are no effective vaccines for the diseases caused by these parasites; therefore, therapy relies heavily on antiprotozoal drugs. However, the treatment options for these parasitic diseases are limited, thus underscoring the need for new anti-protozoal agents. Here, we investigated the anti-parasite action of nanoparticles. We found that the nanoparticles have strong and selective in vitro activity against T. b. brucei but moderate in vitro activity against T. congolense and T. evansi. An estimation of the in vitro anti-Trypanosoma efficacy showed that the nanoparticles had ≥200-fold selective activity against the parasite versus mammalian cells. Moreover, the nanoparticle alloys moderately suppressed the in vitro growth of T. gondii by ≥60%. In our in vivo study, the nanoparticles appeared to exhibit a trypanostatic effect, but did not totally suppress the rat parasite burden, thereby failing to appreciably extend the survival time of infected animals compared with the untreated control. In conclusion, this is the first study to demonstrate the selective in vitro anti-Trypanosoma action of nanoparticles and thus supports the potential of nanoparticles as alternative anti-parasitic agents.


Subject(s)
Chagas Disease/drug therapy , Drug Carriers , Metal Nanoparticles , Toxoplasma/growth & development , Toxoplasmosis/drug therapy , Trypanocidal Agents , Trypanosoma cruzi/growth & development , Animals , Chagas Disease/metabolism , Chagas Disease/pathology , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Carriers/pharmacology , Male , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Rats , Rats, Wistar , Toxoplasmosis/metabolism , Toxoplasmosis/pathology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacokinetics , Trypanocidal Agents/pharmacology
20.
Eur J Med Chem ; 151: 18-26, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29604541

ABSTRACT

Human African trypanosomiasis is causing thousands of deaths every year in the rural areas of sub-saharan Africa. There is a high unmet medical need since the approved drugs are poorly efficacious, show considerable toxicity and are not easy to administer. This work describes the optimization of the pharmacokinetic properties of a previously published family of triazine lead compounds. One compound (35 (UAMC-03011)) with potent anti-trypanosomal activity and no cytotoxicity was selected for further study because of its good microsomal stability and high selectivity for Trypanosoma brucei over a panel including Trypanosoma cruzi, L.eishmania infantum, and Plasmodium falciparum. In vivo pharmacokinetic parameters were determined and the compound was studied in an acute in vivo mouse disease model. One of the important learnings of this study was that the rate of trypanocidal activity is an important parameter during the lead optimization process.


Subject(s)
Triazines/chemistry , Triazines/therapeutic use , Trypanocidal Agents/chemistry , Trypanocidal Agents/therapeutic use , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/drug therapy , Animals , Disease Models, Animal , Humans , Mice , Structure-Activity Relationship , Triazines/pharmacokinetics , Triazines/pharmacology , Tropolone/analogs & derivatives , Tropolone/chemistry , Tropolone/pharmacokinetics , Tropolone/pharmacology , Tropolone/therapeutic use , Trypanocidal Agents/pharmacokinetics , Trypanocidal Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...